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ABSTRACT

This paper presents a comprehensive analysis of tiny machine-learning models for identifying maize crop
diseases. The study evaluates custom deep neural network (DNN) models alongside popular deep learning
architectures in terms of their effectiveness and efficiency in disease identification. The traditional crop
disease detection methods such as manual checking of crop leaves for defects have become obsolete hence
the need for modern and machine learning methods that are accurate and precise. This paper uses a dataset
with maize crops as an example. This paper also compares four types of deep learning architectures used
with custom deep learning architectures namely MobileNet, EfficientNet, ShuffleNet, and SqueezeNet.
MobileNet is a lightweight CNN for mobile devices, it uses depth-wise separable convolutions for efficiency.
EfficientNet is a scalable CNN architecture balancing depth, width, and resolution for optimal performance
across resource-constrained devices. ShuffleNet is an optimized CNN with channel shuffle operations for
cross-group information flow, ideal for resource-constrained environments. SqueezeNet is a compact
CNN-based deep learning architecture utilizing fire modules to minimize parameters while preserving
accuracy, it is suitable for IoT and embedded systems. The comparison of these architectures was done
using the accuracy, loss, train time, and validations as the model selection criteria for comparison. The
results show that MobileNet and SqueezeNet outperform both the Custom Model and ShuffleNet in terms
of both test loss and test accuracy. EfficientNet, however, shows significantly poorer performance
compared to the other models, particularly in terms of test accuracy. The Custom Model achieved a test
loss of 0.15 with a test accuracy of .96.38%, while MobileNet attained a lower test loss of 0.098 and a higher
test accuracy of 97.32%. In contrast, EfficientNet exhibited the highest test loss of 2.79 with the lowest test
accuracy of 28.43%. ShuffleNet showed a test loss of 0.12 and a test accuracy of 96.18%, whereas
SqueezeNet achieved a slightly lower test loss of 0.09 but a similar test accuracy of 96.84. Contribute to
advancing the development of precision agriculture technologies tailored to address crop health challenges.

Keywords: CNN; deep neural network; disease identification; EfficientNet; maize crop; MobileNet;
SqueezeNet; ShuffleNet; Tiny Machine Learning
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Introduction
Maize crop diseases pose significant threats to agricultural productivity worldwide. According to recent
statistics, crop diseases can cause up to 40% loss in yield annually, leading to substantial economic losses
and food insecurity in many regions (Savary et al., 2012). Traditional methods of disease identification,
such as manual inspection of crop leaves, are labor-intensive, time-consuming, and often prone to errors,
rendering them inadequate for large-scale farming operations.

In response to these challenges, there has been a growing interest in leveraging machine learning techniques,
particularly tiny machine learning models, for more accurate and efficient disease identification in maize
crops. Tiny machine-learning models refer to lightweight and resource-efficient models optimized for
deployment on edge devices with limited computational power and memory (Liu et al., 2021) (Rahul Kumar
et al., 2022). These models hold immense potential for revolutionizing precision agriculture by enabling
real-time disease detection and targeted intervention strategies.

Recent advancements in deep learning architectures, such as Convolutional Neural Networks (CNNs),
have paved the way for the development of tiny machine learning models tailored specifically for
agricultural applications. These models, including MobileNet, EfficientNet, ShuffleNet, and SqueezeNet,
offer a promising avenue for automating the detection and diagnosis of maize crop diseases with high
accuracy and reliability.

The primary objective of this paper is to conduct a comprehensive analysis of these tiny machine-learning
models in the context of maize crop disease identification. By evaluating the effectiveness and efficiency of
these models, we aim to provide insights into their practical applicability and performance across various
agricultural settings.

Throughout this paper, we explore how these tiny machine-learning models compare in terms of accuracy,
loss, training time, and validation metrics, shedding light on their suitability for real-world deployment in
precision agriculture. By leveraging the power of deep learning and tiny machine learning models, we strive
to contribute to the advancement of sustainable farming practices and the mitigation of crop health
challenges on a global scale.Top of Form

Background and Literature Review

In agricultural research, significant efforts have been dedicated to categorizing, identifying, and delineating
the attributes of plant diseases by employing deep learning methodologies and image-processing techniques.
Moreover, the utilization of convolutional neural network (CNN) processing methodologies has gained
momentum in the examination of plant diseases within the realm of agriculture. The research encompassed
several databases, incorporating IEEE Xplore, ResearchGate, and Google Scholar. The authors employed
targeted keywords like “deep learning,”, “Models”, "Maize leaf disease detection,” and "TinyML" to
pinpoint pertinent articles and studies. Plant diseases are the major cause of low agricultural productivity.
Mostly the farmers encounter difficulties in controlling and detecting plant diseases. Thus, early detection
of these diseases will be beneficial for farmers to avoid further losses. A range of machine learning and deep
learning models have been explored for maize crop disease identification. Our reviewed paper referenced
by (Panigrahi et al., 2020) focuses on supervised machine learning techniques such as Naive Bayes (NB),
Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and Random Forest
(RF) for maize plant disease detection with the help of the images of the plant. The aforementioned
classification techniques are analyzed and compared to select the most suitable model with the highest
accuracy for plant disease prediction. The RF algorithm results with the highest accuracy of 79.23% as
compared to the rest of the classification techniques. All the aforesaid trained models will be used by the
farmers for the early detection and classification of the new image diseases as a preventive measure.

The investigation of transfer learning of deep convolutional neural network and modification of the
network structure to improve the learning capability of pant lesion characteristic was done by (J. Chen et
al., 2021) The MobileNet with squeeze-and-excitation (SE) block was selected in our approach. Integrating
the merits of both, the pre-trained MobileNet and SE block were fused to form a new network, which we
termed the SE-MobileNet, and was used to identify the plant diseases. In particular, the transfer learning
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was performed twice to obtain the optimum model. The first phase trained the model for the extended layers
while the bottom convolution layers were frozen with the pre-trained weights on ImageNet; by loading the
model trained in the first phase, the second phase retrained the model using the target dataset. The proposed
procedure provides a significant increase in efficiency relative to other state-of-the-art methods. It reaches
an average accuracy of 99.78% in the public dataset with clear backdrops. Even under multiple classes and
heterogeneous background conditions, the average accuracy is 99.33% for identifying the rice disease types.
The experimental findings show the feasibility and effectiveness of the proposed procedure.

Another paper we reviewed referenced as (Nourish et al., 2023) provided a comprehensive review of deep
learning methods for plant disease identification, emphasizing the need for further research to improve
system performance and accuracy. Their main objective was to strengthen the quality of maize plant leaf
disease detection and inspire further research in this field. The process of detecting and recognizing disease
in plants is crucial for the early control of pests and diseases that significantly affect plant growth. Although
maize is the most productive food crop worldwide, it can suffer from physiological lesions caused by viral
and fungal infections primarily visible in the leaves. The automatic identification and classification of plant
diseases are essential for sustainable agriculture, but it remains a significant challenge. Existing techniques
proposed for this purpose are limited in scope and rely solely on models for deep learning. Using cropped
photos, convolutional neural networks have been demonstrated to be the most adequate method for
identifying and forecasting illnesses. An overview of deep learning methods for identifying plant diseases is
given in this article, which also includes data collection sources, deep learning architectures, and image
processing methods. The study evaluates existing deep learning models and highlights their results, with a
focus on future research to improve system performance and accuracy for detecting crop diseases using
better deep learning capabilities.

The timely identification and early prevention of crop diseases are essential for improving production and
were examined by researchers to identify and diagnose diseases in plants from their leaves since CNNs have
achieved impressive results in the field of machine vision. Standard CNN models require a large number of
parameters and higher computation costs. (Hassan et al, 2021) In this paper, we replaced standard
convolution with depth=separable convolution, which reduces the parameter number and computation
cost. The implemented models were trained with an open dataset consisting of 14 different plant species, 38
different categorical disease classes, and healthy plant leaves. To evaluate the performance of the models,
different parameters such as batch size, dropout, and different numbers of epochs were incorporated. The
implemented models achieved disease-classification accuracy rates of 98.42%, 99.11%, 97.02%, and 99.56%
using InceptionV3, InceptionResNetV2, MobileNetV2, and EfficientNetBO, respectively, which were
greater than that of traditional handcrafted-feature-based approaches. In comparison with other deep-
learning models, the implemented model achieved better performance in terms of accuracy and it required
less training time. Moreover, the MobileNetV2 architecture is compatible with mobile devices using the
optimized parameter. The accuracy results in the identification of diseases showed that the deep CNN
model is promising and can greatly impact the efficient identification of diseases, and may have potential
in the detection of diseases in real-time agricultural systems.

These studies collectively highlight the potential of various machine learning and deep learning models for
maize crop disease identification, with models showing particularly promising results but each of the
researchers did not focus their model development on resource-constrained devices with low Random
Access Memory, low flash size, and low memories. The Summary of some notable related works is tabulated
in Table 1 below.

Materials and Methods

In the realm of agricultural technology, the identification of maize crop diseases stands as a crucial
endeavor. As traditional methods of disease detection become outdated, the integration of modern machine
learning techniques offers a promising solution. This paper undertakes a comparative analysis of tiny
machine-learning models tailored for the identification of maize crop diseases. By evaluating the
effectiveness and efficiency of these models, we aim to discern optimal methodologies for disease
identification in agricultural settings. Through the exploration of deep learning architectures such as
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MobileNet, EfficientNet, ShuffleNet, and SqueezeNet, we seek to shed light on their performance and
potential contributions to precision agriculture technologies.

EEE—
Data
Acquisition
—
Data
Preprocessin
ShuffieNet | . g )
MobileNet v
EfficientNet Model Model o
4[ CNN Model J"l Training —> Validation Prediction
| Squeeze Forest |
| Custom CNN |
Fig 1: Workflow for this project.
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Dataset Collection

The dataset utilized in this study encompasses a diverse array of categories crucial to agricultural research,
including Blight, Common Rust, Gray Leaf Spot, Streak Virus, and Healthy leaves. Sourced meticulously
from reputable repositories such as Kaggle, Harvard Dataverse (Mduma, Neema, et al. 2022), and
Mendeley Data (Mensah Kwabena, Patrick, et al. 2023), these high-quality images ensure the authenticity
and relevance required for robust analysis. Originally, the images within the dataset exhibited varying
dimensions and were provided in JPEG format. To facilitate streamlined analysis and ensure uniformity,
augmented images were incorporated, each resized to a standardized dimension of 96x96 pixels. This
preprocessing step maintains data integrity and simplifies the research process by providing consistent
inputs for model training and evaluation.

The dataset used in this study consists of a combined set of raw images, totaling 12,344 instances, and
augmented images, amounting to 7,454 color images. To partition the dataset for model training and
evaluation, a standard practice of splitting into training and testing sets was employed. The split ratio of
80/20, determined through empirical studies, ensures an optimal balance between model training and
evaluation performance. The dataset distribution across different classes is as follows: Blight (4,099 images),
Common Rust (3,480 images), Gray leaf Spot (4,159 images), Healthy (3,948 images), and Streak Virus
(4,109 images). This distribution is visualized graphically in Fig. 3, providing insights into the distributional
characteristics of the dataset across various classes. Additionally, Fig. 4 offers a visual representation of
each class, further enhancing the understanding of the dataset's composition and diversity.
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Fig 2: Dataset image class count

Fig 3: Dataset Image Class Samples

Overall, this extensive dataset serves as a valuable resource for researchers, agricultural experts, and
machine learning practitioners, fostering advancements in disease detection and classification in maize
crops. Its comprehensive nature and meticulous curation contribute to the development of robust and
accurate machine-learning models tailored to address real-world agricultural challenges.

Top of Form

Dataset Preprocessing

Dataset preprocessing is a fundamental step in readying data for machine learning tasks, ensuring data is
structured optimally for model training and evaluation. In the context of image classification and our study,
our preprocessing involved several key stages:

¢ Loading Data: The dataset, comprising images and corresponding labels, is loaded into memory.
This process can vary based on the dataset format, including loading images from directories or
structured data files.

e Resizing Images: Images are often resized to a consistent dimension to ensure uniformity and
compatibility with the model architecture. For instance, in the provided scenario, images are
resized to dimensions of (96, 96) pixels.

e Data Augmentation: Data augmentation techniques are applied to enhance the dataset's diversity
artificially. This practice aids in improving model generalization and mitigating overfitting.
Common augmentation methods include random flips, rotations, zooms, shifts, and adjustments
in brightness or contrast. The implementation in the provided example involves a sequence of
random augmentation layers, structured using tf. keras.Sequential.
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e Normalization: Pixel values within images are normalized to fall within a standardized range, often
between 0 and 1. Normalization stabilizes the training process and can expedite convergence.

e Dataset Splitting: The dataset is divided into training and validation subsets, usually adhering to
an 80/20 split ratio. The training subset is utilized to train the model, while the validation subset is
leveraged to assess the model's performance during training and fine-tune hyperparameters.

e Batching: Data is segmented into batches of predetermined sizes. Batching optimizes memory
utilization and enables parallel processing during model training.

e (lass Label Encoding: Class labels are encoded into numerical formats, typically employing one-
hot encoding techniques. This encoding simplifies model training and evaluation procedures.

Models Selection and Optimization

Recent advancements in image classification primarily rely on Convolutional Neural Networks (CNNs),
designed to automatically detect and recognize patterns within input images. CNNs, such as ShuffleNet,
EfficientNet, MobileNet, and SqueezeNet, are notable for their efficiency on resource-constrained devices.
While ShuffleNet employs channel shuffling and pointwise group convolutions to achieve high performance
with lower computational costs, SqueezeNet utilizes fire modules to maintain accuracy in a compact
network design, ideal for edge devices.(Arun & Viknesh, 2022) EfficientNet employs compound scaling for
balanced model depth, width, and resolution, optimizing performance across various computational
budgets.

Meanwhile, MobileNet utilizes depthwise separable convolutions to reduce computational complexity
while maintaining expressive power, making it ideal for mobile and embedded vision applications. (Dey et
al., n.d.) For this project, four TinyML CNN-based architectures and a custom CNN architecture were
used due to their suitability for the resource-constrained microcontroller units. The CNN architectures
comprise convolutional layers with a kernel size of 3 each, followed by max-pooling layers, a flattened layer,
a dense layer with 128 neurons, and a dropout rate of 0.25. The model's input layer consists of 27,648
features, with the output layer containing five classes including; Blight, Common Rust, Gray Leaf Spot,
Streak Virus, and Healthy. The models incorporate ReLU activation functions in their convolutional layers
to introduce non-linearity and facilitate learning complex representations. To prevent overfitting, a dropout
layer with a dropout rate of 0.25 is added after the densely connected layer with 128 units.

Additionally, L1 regularization is applied to the dense layer to control overfitting by penalizing the loss
function. Hyperparameters play a crucial role in shaping the behavior and effectiveness of deep learning
algorithms. For this research, the following hyperparameters were refined and adjusted: Following model
optimizations, notable improvements were observed across various metrics, including reduced latency,
optimized memory consumption, and maintained high accuracy. (C. Chen et al., 2021). These enhancements
underscore the model's suitability for deployment on the Arduino BLE Sense platform. The optimized
hyperparameter values used for the model are summarized in Table 2:

TABLE 2
General Models Hyperparameters

Hyperparameter Value

Learning Rate 0.0005

Batch Size 32

Epochs 20

Dropout Rate 0.25

Betal 0.9

Beta2 0.99
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Deep Learning Models

Each selected model architecture underwent rigorous examination and customization to ensure optimal
performance in maize crop disease identification: Detailed architectural diagrams and model summaries
were created for MobileNet, EfficientNet, ShuffleNet, SqueezeNet, and the Custom CNN model. Equations
and formulae were employed to elucidate specific components and operations within each architecture,
providing insights into their design principles and computational efficiency.

ShuffleNet

ShuffleNet presents a highly efficient convolutional neural network (CNN) architecture specifically tailored
for mobile devices with limited computational power, ranging from 10-150 Million Floating Operating Per
Second (MFLOPs). ShuffleNet integrates novel techniques like pointwise group convolution and channel
shuffle to reduce computation costs while maintaining accuracy drastically. By enabling information flow
across feature channels and leveraging group convolutions, the ShuffleNet model is designed for image
classification tasks. (Zhang et al., 2017) It comprised three convolutional layers followed by max-pooling
layers to extract features and reduce spatial dimensions. A flattened layer transforms the output into a one-
dimensional vector, facilitating input to fully connected layers.(Wijaya et al., 2022) The model includes a
dense layer with 128 units for feature extraction and a dropout layer to prevent overfitting. The final dense
layer, with five units, serves as the output layer for classification. This architecture is well-suited for tasks
requiring image classification, such as identifying diseases in maize crops. Fig 4. Shows the architecture of
our ShuffleNet model.

Fig 4: Our ShuffleNet Architecture

EfficientNet

EfficientNet is a scalable convolutional neural network architecture that balances depth, width, and
resolution to achieve optimal performance across resource constraints. (Yi et al., 2022) The provided
architecture represents EfficientNet, a scalable convolutional neural network designed to balance model
complexity and computational efficiency. It consists of multiple blocks, each containing depthwise
convolutions, batch normalization, and activation layers. The network starts with a stem convolution layer
followed by a series of blocks with expanding and depthwise convolution operations. (Kaur et al., 2023)
These blocks are interconnected, allowing for feature extraction across different levels of abstraction.
Additionally, squeeze-and-excite modules enhance channel-wise feature recalibration to improve model
performance. The network concludes with a top convolutional layer and global average pooling to
aggregate features, followed by fully connected layers for classification. Dropout regularization is applied
to mitigate overfitting, and the final dense layer produces class predictions. (Aggarwal et al., 2023)
EfficientNet's design principles enable it to achieve high accuracy while being computationally efficient,
making it suitable for various image classification tasks, including maize crop disease identification. Fig 5.
Shows the architecture of our EfficientNet model.
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Fig 5: Our EfficientNet Architecture

MobileNet

We used an architecture that outlines MobileNet, a lightweight convolutional neural network designed for
mobile and embedded devices. (Howard et al., 2017) It consists of multiple layers, starting with an input
layer accepting images of size 96x96x3. The network incorporates depthwise separable convolutions, which
significantly reduce computational complexity by separating spatial and depthwise convolutions. Batch
normalization and ReLU activation functions are applied after each convolutional layer to stabilize and
enhance the learning process. The network architecture includes several blocks of depthwise and pointwise
convolution layers, progressively reducing spatial dimensions while increasing the number of channels.
Global average pooling is employed to condense spatial information into a feature vector, which is then
passed through fully connected layers for classification. (Howard et al., 2017) Dropout regularization is
used to prevent overfitting, and the final dense layer produces class predictions. MobileNet's architecture
prioritizes efficiency and performance, making it suitable for resource-constrained environments and
applications like maize crop disease identification. Fig 6. Shows the architecture of our MobileNet model.

serving_default_input_1:0 0

DepthwiseConv2D

FullyConnected

StatefulPartitionedCall:0 95

Fig 6: Our MobileNet Architecture
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SqueezeNet

The used architecture depicts SqueezeNet, a compact convolutional neural network designed to achieve
high accuracy with significantly fewer parameters than traditional architectures. It begins with an input
layer accepting images of size 96x96x3. (Iandola et al, 2016) The network primarily consists of
convolutional layers, with occasional max-pooling layers for downsampling. SqueezeNet employs a fire
module architecture, which comprises a combination of 1x1 pointwise convolutions to reduce the number
of input channels followed by a mix of 1x1 and 3x3 convolutions to capture spatial information effectively.
These fire modules are concatenated to form the network's backbone, enabling efficient feature extraction.
Dropout layers are inserted to mitigate overfitting during training. (Hidayatuloh et al., n.d.) The final layers
include a convolutional layer with a 3x3 kernel to produce the output logits, followed by global average
pooling to condense spatial information into a vector. An activation function (such as softmax) is applied
to produce the final class probabilities. SqueezeNet's design emphasizes parameter efficiency and
computational speed, making it suitable for resource-constrained environments and applications like maize
crop disease identification. (Safie et al., 2023) Fig 7. Shows the architecture of our SqueezeNet model.

MaxPool2D

StatefulPartitionedCall:O 54

Fig 7: Our MobileNet Architecture

Custom Model

Our custom model architecture comprised a series of convolutional (Conv2D) and max-pooling
(MaxPooling2D) layers followed by a flattened layer to transition from convolutional to fully connected
layers. The convolutional layers employ varying filter sizes and numbers to extract hierarchical features
from the input data, which are then downsampled using max-pooling operations to reduce spatial
dimensions while preserving important features. (J. Chen & Ran, 2019). The flattened layer reshapes the
output from the convolutional layers into a vector suitable for input into the subsequent fully connected
layers. The dense layers (Dense) serve as the classifier, with the final layer (y_pred) producing the model's
output predictions. A dropout layer is included to prevent overfitting by randomly dropping connections
during training. (Nourish et al., 2023) This architecture is designed for classification tasks, particularly for
maize crop disease identification, where the model learns to classify images into one of five classes based on
the features extracted from the input images. Fig 8. Shows the architecture of our Custom model.
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Fig 8: Custom Model Architecture

Comparison of the Models

The performance evaluation of each model was conducted systematically, we employed a comprehensive
array of evaluation metrics such as accuracy, loss, training time RAM size, and number of parameters.
Through meticulous analysis and comparison across all models, particular emphasis was placed on several
key aspects. (Da Silva et al., 2023) Loss metrics were scrutinized to gauge the optimization objectives during
model training, reflecting the disparity between predicted and ground-truth labels. (Tan & Le,
2019)Moreover, the training time, indicative of the computational resources and duration required for each
model to reach convergence, was thoroughly examined. The comparison analysis aimed to discern the
strengths and limitations of each model in the context of maize crop disease identification. Insights gleaned
from this comprehensive comparison process served to inform the selection of the most effective and
efficient model for real-world deployment in precision agriculture applications.

Results and Discussion

In this section, we present the experimental results obtained from the evaluation of various models designed
for maize crop disease identification. The experiments were meticulously conducted, utilizing a diverse
range of evaluation metrics including accuracy, loss, and training time. The objective of our study was to
assess the performance of each model and compare their efficacy in accurately classifying maize crop
diseases while differentiating them from healthy plants. (Yumang et al., 2023) Through systematic analysis
and comparison of the experimental outcomes, we aimed to identify the strengths and limitations of each
model, ultimately seeking to determine the most effective and efficient model for deployment in precision
agriculture applications. The experimental results provide valuable insights into the performance of
different models, offering guidance for the selection of optimal solutions in the context of maize crop disease
identification.

ShuffleNet

ShuffleNet from Fig. 6 and Fig. 7 demonstrated commendable performance in maize crop disease
identification, achieving a training accuracy of 97.05% and a competitive validation accuracy of 93.42%.
Its test accuracy of 93.45% underscores its ability to generalize well to unseen data. Moreover, ShuffleNet
exhibits efficient training, with a relatively short training time of 2,220.31 seconds. These results position
ShuffleNet as a promising model for real-world deployment in precision agriculture applications due to its
balance of accuracy and computational efficiency.
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Fig 10: ShuffleNet Model training and validation loss

EfficientNet
EfficientNet achieves an impressive training accuracy of 99.45%, and its validation accuracy of 22.26%
raises concerns about its ability to generalize effectively to new data. This discrepancy suggests potential
overfitting issues, which are further supported by its relatively high test loss and low test accuracy of 22.33%.
Additionally, EfficientNet requires a substantially longer training time of 16,726.78 seconds, highlighting
its computational demands. Despite its high training accuracy, EfficientNet may not be the optimal choice
for maize crop disease identification due to its poor performance on unseen data and high computational
requirements. Fig 8 and Fig 9, represent the above metrics.
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Fig 11: EfficientNet Model training and validation accuracy
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Fig 12: EfficientNet Model training and validation loss

MobileNet

MobileNet exhibits strong performance across various metrics, achieving a training accuracy of 99.39%
and a validation accuracy of 98.45%. Its test accuracy of 98.46% confirms its robustness in accurately
classifying maize crop diseases. With a training time of 11,192.14 seconds, MobileNet strikes a balance
between accuracy and training efficiency. These results position MobileNet as a highly effective model for
maize crop disease identification, suitable for real-world deployment in precision agriculture applications.
Fig 10 and Fig 11, represent the above metrics.
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Fig 13: MobileNet Model training and validation accuracy
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Fig 14: MobileNet Model training and validation loss

SqueezeNet

SqueezeNet demonstrates competitive performance with a training accuracy of 96.58% and a validation
accuracy of 96.32%. Its test accuracy of 96.31% reflects its ability to generalize well to unseen data,
supported by its relatively low test loss. SqueezeNet's training time of 5,205.79 seconds further enhances its
appeal as an efficient model for maize crop disease identification. The model's combination of accuracy and
training efficiency makes it a compelling choice for deployment in precision agriculture scenarios. Fig 12
and Fig 13, represent the above metrics.
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Fig 15: SqueezeNet Model training and validation accuracy
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Fig 16: Squeeze Model training and validation loss

Custom Model

The custom model achieves a commendable training accuracy of 99.11% and a validation accuracy of
96.37%, reflecting its ability to generalize effectively to new data. Its test accuracy of 96.36% further
corroborates its robust performance in maize crop disease identification. With a training time of 5,128.75
seconds, the custom model offers a balanced trade-off between accuracy and computational efficiency.
These results highlight the efficacy of the custom model in accurately classifying maize crop diseases,
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making it a strong contender for real-world deployment in precision agriculture applications. Fig 14 and
Fig 15, represent the above metrics.
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Fig 17: Custom Model training and validation accuracy
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Fig 18: Custom Model training and validation loss

This table summarizes the key metrics for each model, including training accuracy, validation accuracy,
validation loss, test loss, test accuracy, training time, total parameters, trainable parameters, non-trainable
parameters, and model size.
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TABLE 3
Summary of key metrics for each model
Model Training Validation Validation Test Test Training Total Trainable Non- Model
Acc Acc Loss Loss  Acc Time (s) Params Params trainable Size
Params
ShuffleNet  0.9705 0.9342 0.1875 0.1868 0.9345 2220.31 320,565 320,565 0 85.00KB
EfficientNet 0.9945 0.2226 6.5780 6.5721 0.2233 16726.78 4,214,184 4,172,161 42,023 15.90MB
MobileNet  0.9939  0.9845 0.0580 0.0577 0.9846 11192.14 3,360,709 3,338,821 21,888 12.70MB
SqueezeNet  0.9658 0.9632 0.0968 0.0968 0.9631 5205.79 121,701 121,701 0 484.00KB
Custom 0.9911 0.9637 0.1574 0.1570 0.9636 5128.75 320,565 320,565 0 1.22MB
Model

The experimental results present a comprehensive comparison of five machine learning models for maize
crop disease identification: ShuffleNet, EfficientNet, MobileNet, SqueezeNet, and a custom model. Each
model achieved varying levels of training accuracy, with EfficientNet leading at 99.45%, followed closely
by MobileNet and the custom model at 99.39% and 99.11%, respectively. However, significant disparities
emerged in validation accuracy, with ShuffleNet and MobileNet excelling at 93.42% and 98.45%, while
EfficientNet and the custom model lagged at 22.26% and 96.37%. SqueezeNet also performed well with a
validation accuracy of 96.32%. Regarding training time, EfficientNet required the longest duration at
16,726.78 seconds, while ShuffleNet demanded the least time at 2,220.31 seconds. Notably, while
EfficientNet boasted the highest training accuracy, its validation and test accuracies were notably lower
compared to MobileNet and the custom model, indicating potential overfitting concerns. Conversely,
ShuffleNet demonstrated a balance of accuracy and efficiency. Based on the results, MobileNet and the
custom model appear to perform the best due to their high accuracy and reasonable training times. To build
a better model, one could explore ensemble methods combining the strengths of different architectures or
employ transfer learning techniques to leverage pre-trained models on larger datasets for improved
generalization. Additionally, fine-tuning hyperparameters and architectural modifications could enhance
model performance and robustness.

Conclusion and Recommendation

The paper presents a comprehensive investigation into the application of tiny machine learning models for
the identification of maize crop diseases, juxtaposing custom deep neural network (DNN) architectures
with established models such as MobileNet, EfficientNet, ShuffleNet, and SqueezeNet. It underscores the
limitations of conventional manual disease detection methods while highlighting the transformative
potential of machine learning models in precision agriculture. Through meticulous evaluation based on
metrics including accuracy, loss, training time, and validation, the study identifies MobileNet, Custom
model, and SqueezeNet as standout performers among the models assessed. This emphasizes the pivotal
role of such technologies in augmenting agricultural efficiency and productivity, paving the way for future
advancements in precision agriculture technology. For future investigations, the paper advocates for the
exploration of ensemble methods, the utilization of transfer learning techniques, and the fine-tuning of
hyperparameters to elevate model performance and bolster its robustness in disease identification tasks. By
delving into these avenues, researchers can further refine the efficacy and applicability of machine learning
models in addressing the intricate challenges of disease detection in agriculture, thereby advancing the
frontiers of precision agriculture technology.
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